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Abstract

Wemodel a production network economy with sectoral and occupational un-
employment by incorporating matching between job seekers across various oc-
cupations and employers in different production sectors. We derive expressions
that unpack how the impact of microeconomic shocks on output and unemploy-
ment depends on the interaction between the network linkages, search costs, and
changes in labor market tightness. When labor markets are slack, our model pre-
dicts larger output and employment responses because the network-adjusted labor
productivity gain outweighs search costs. Calibrating ourmodel to the U.S. economy,
we demonstrate that our model significantly amplifies the response of aggregate
output and unemployment to productivity shocks in any sector and changes the
relative importance of sectors to aggregate output and unemployment. Our model
nearly doubles the output response compared to an efficient production network
and triples the unemployment response compared to a multi-sector search model
following a productivity shock to durable manufacturing.
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1. Introduction

Modern economies feature intricate production networks and specialized labormarkets.
The interplay between output and unemployment across sectors calls for an integrated
modeling approach that combines production networks with search frictions. Incorpo-
rating search frictions allows us to study unemployment, an economic force important
for both individual households (Jacobson et al. 1993; Bertheau et al. 2023) and society at
large (Borgschulte and Martorell 2018; Mas and Pallais 2019; Michaillat and Saez 2021),
while integrating sectoral linkages enables us to examine cross-sectoral spillovers in
output and employment. A model that has both ingredients sheds light on a crucial
question: which jobs and sectors are most affected by sector-specific shocks?

In this paper, we introduce a novel theoretical framework to answer this question.
Our approach hinges on three key components. First, our model features a production
network using a similar setup to Baqaee and Farhi (2020), mirroring the intricate in-
terdependencies within any modern economy, as highlighted by recent supply chain
disruptions during the COVID-19 pandemic. Second, it includes workers frommultiple
occupations, ranging from specific job roles like engineers to location-specific positions
like Detroit-based maintenance and repair workers. This flexible definition of labor
markets helps us examine the impact of sectoral shocks on different worker groups.
Third, the model features unemployment. Unemployment exists because firms must
search for suitable workers to fill job openings, leading to a matching process that
is inherently time-consuming. With these realistic economic features, productivity
shock impacts sectoral output directly through productivity and intermediate goods
production, and indirectly through labor market conditions.

The model reveals a novel channel through which shocks propagate, influenced
by the interplay between costly job searches and production linkages, affecting both
sector-specific and aggregate output and unemployment levels. Think about, for in-
stance, the interconnectedness of automobile manufacturers and transportation firms,
linked through product sales and the specific types of labor they use. A positive produc-
tivity shock to car manufacturing, leading to cheaper vehicles for the transportation
sector, can reduce transportation service costs for car manufacturers. This leads to
an expansion in output in both sectors, increasing the demand for maintenance and
repair mechanics and thus affecting employment. Conversely, a tighter labor market
can increase hiring costs for mechanics, negatively influencing sectoral productive
capacity. We derive tractable expressions, which consist of network linkages, search
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costs, and labormarket tightness, for how technology shocks disseminate and aggregate
across the production network in the presence of search frictions that capture exactly
this intuition.

Specifically, we show that the aggregate impact on output and unemployment com-
prises two components. The first component mirrors Hulten (1978)’s foundational aggre-
gation theorem, where the aggregate output response is a sales-share-weighted sum of
sectoral technology shocks. The second term, which we call the search-and-matching
channel, captures complex interactions between the production and labormarket struc-
tures. For example, this includes how a positive shock to a carmanufacturer impacts the
labor demand for mechanics from a downstream transportation firm and how the re-
sulting labor market for mechanics further alters production decision until equilibrium
is restored. We recover Hulten’s theorem as an edge case in our model: when rela-
tive wages adjust exactly according to the occupational-labor-share-weighted marginal
product of labor, tightness—the number of vacancies over the number of unemployed
workers—remains unchanged, effectively eliminating all additional propagation coming
from labor market matching frictions.

The extent to which our novel propagation mechanism amplifies shocks depends
on two factors: the difference between network-adjusted productivity gains and wage
adjustments, and labor market tightness. As demonstrated by Shimer (2005) and Hall
(2005), the search-and-matching setup admits a range of assumptions about wages, each
with very different quantitative consequences. If wages are somewhat rigid, meaning
they adjust less than the network-adjusted productivity gains from positive shocks, it
becomes beneficial for firms to hire more production workers. Our analysis illustrates
that canonical rigid wage assumptions, including flexible wages in models without
production networks,1 satisfy this condition. However, hiring more production workers
requires firms to allocate some of their workforce to recruiting. In tight labor markets,
the rising costs of recruitment can offset the benefits of enhanced worker productivity,
and when these costs are sufficiently high, the search channel can dampen the shock
propagation.

In addition to technology shocks, our setup allows us to explore another set of shocks:
shocks to the size of the labor force. We can think of these shocks as coming from an
underlying model of occupational choice, as in Humlum (2021), or from an underlying
model of migration, as in Fernandez-Villaverde (2020). Unlike in the standard produc-

1This is because network adjustments can amplify productivity gains and losses, so the network-
adjusted productivity can change more than one-for-one.
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tion networks setup, where a positive shock to the size of the labor force mechanically
increases output due to firms being forced to hire all available workers, our framework
allows the firms’ hiring decision to vary depending on wages. For instance, if wages re-
main relatively stable following a positive labor force shock, firms may not significantly
increase their hiring, dampening the overall effect on output while generating large
changes to unemployment.

We calibrate our model to U.S. data to quantify the empirical relevance of the theo-
retical channels outlined above. We use sectoral vacancy and hiring data from the Job
Openings and Labor Turnover Survey (JOLTS), sectoral unemployment data from the
Current Population Survey (CPS), and occupation usage data from the Bureau of La-
bor Statistics’ (BLS) Occupational Employment and Wage Statistics (OEWS) to estimate
matching parameters and baseline tightness. Industry sales shares and factor usage
from the U.S Bureau of Economic Analysis (BEA) map directly into production function
elasticities in our Cobb-Douglas setup. We then introduce productivity shocks to each
sector to demonstrate the key role of both the production network and the search-
and-matching structure of the labor market. Accounting for the production network
amplifies productivity effects and leads to much broader impacts on unemployment
compared to a multi-sector model without production linkages. Including search and
matching in the model introduces unemployment and, under realistic assumptions
about wage changes, further enhances these effects beyond what is observed in models
with only production linkages and no search and matching.

Assuming the real wage is partially rigid2, aggregate output and unemployment
respond significantly more to productivity shocks in each sector in our model than in a
model featuring only production linkages or only search-and-matching frictions. On
top of increasing the magnitude of responses, accounting for both network linkages
and search-and-matching changes the relative importance of each sector for aggregate
output and unemployment. For instance, a pure production networks model attributes
too little importance to the retail and wholesale trade sector but too much importance
to the non-durable manufacturing sector. A multi-sector search-and-matching model
attributes too much importance the education and health sector, but too little to in-
formation services. In our full model, shocks to the professional and business service

2We define the real wage as the nominal wage over the network-adjusted price. We assume that a
1% increase in the network-adjusted marginal product of labor results in a 0.7% increase in real wages,
based on the based on the elasticity estimate of total earnings for job movers in relation to productivity.
This estimate comes from Haefke et al. (2013), who analyze panel data tracking a sample of production
and supervisory workers from 1984 to 2006, finding an elasticity of 0.7.
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sector have the largest effect on aggregate output. This sector ranks fourth in a pure
production network and sixth in a multi-sector search-and-matching model without
production linkages.

These differences between our model and the two baselines arise because our
network-adjusted search-and-matching channel interacts the network significance of a
firm with its employment share in the occupational labor markets. A search model cap-
tures that larger employers are more important for output and unemployment, but not
that sectors which sell to large employers are also important through the labor channel.
A production networks model can capture that sectors which are major suppliers to
other sectors are more important, but not how this translates to the labor productivity
of workers and that each sectors employment share therefore matters beyond the direct
effect on intermediate inputs. Our model captures both features and suggests a that a
sectors labor-adjust network centrality is an important determinant of the output and
unemployment responses to sector level shocks.

Continuing with our illustrative example, we apply a positive productivity shock to
the durable manufacturing sector and find that the differences between our model and
our baselines persist for the sector level response of output and the occupation level
response of unemployment. A 1% positive technology shock to the durable manufac-
turing sector increases the transportation sector’s output by 0.2% and decreases the
unemployment rate for maintenance and repair workers by 0.3 percentage points. In
addition, aggregate output increases by 0.4%, and the aggregate unemployment rate
decreases by 0.2 percentage points. Without search-and-matching frictions, the same
shock would increase transportation output by only a quarter as much, increase ag-
gregate output by just over half as much, and would not affect unemployment. On the
other hand, a model with only search frictions would predict under half of the increase
in aggregate output and just a quarter of the decrease in unemployment.

This paper contributes to the production network literature. Since early contribu-
tions by Long and Plosser (1983); Acemoglu et al. (2012); Jones (2011), a recent literature
has incorporated inefficiencies into production network models, including markups
(Liu 2019; Baqaee and Farhi 2020), financial frictions (Bigio and La’O 2020), and nom-
inal rigidities (Rubbo 2023; La’O and Tahbaz-Salehi 2022; ?; Baqaee and Farhi 2022;
di Giovanni et al. 2023). While these models provide a more realistic view of product
and financial market inefficiencies, their treatment of labor markets does not allow for
unemployment. Incorporating search and matching allows us to derive closed-form
expressions for the first-order propagation of sector-level shocks to output and un-
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employment that are analogous to propagation results presented in this production
network literature (e.g., Baqaee and Farhi 2020).

Similar to Baqaee and Farhi (2022) and di Giovanni et al. (2023), who examine the
impact of labor supply shocks in NewKeynesian production networkmodels, ourmodel
features endogenous wedges operating through labor market frictions. In Baqaee and
Farhi (2022) and di Giovanni et al. (2023), Keynesian unemployment arises due to la-
bor demand failing to meet inelastic labor supply when wages are downwardly rigid.
By modeling search-and-matching between sectoral employers and occupational em-
ployees, we provide important microfoundations for unemployment and labor market
frictions in production network models. Our definition of unemployment is more com-
prehensive than Keynesian unemployment, which only occurs in demand-constrained
sectors during economic downturns. In addition, we do not assume that occupations are
sector specific. Workers can therefore flow between sectors because multiple sectors
employ workers from the same occupation. Sector specific segmentation arises from
underlying segmentation at the occupation level and from search and matching fric-
tions. We therefore provide important microfoundations for sector level segmentation
which di Giovanni et al. (2023) show is a key driver of recent inflation.

This paper also fits in the longstanding literature on search and matching in labor
markets, pioneered by Pissarides (1984), Pissarides (1985), Diamond (1982a), Diamond
(1982b), Mortensen (1982a), and Mortensen (1982b). Our particular labor market spec-
ification closely aligns with Michaillat and Saez (2015) and Landais et al. (2018). Like
them, we frame search costs in terms of the recruiter-producer ratio and work primar-
ily within a static setup for tractability. While the textbook model of Pissarides (2017)
generates qualitatively reasonable labor market responses to shocks, Hall (2005) and
Shimer (2005) highlight that the magnitude of observed fluctuations for key labor mar-
ket characteristics is too large to be quantitatively explained by shocking the textbook
search-and-matching model. Hall (2005) proposes including rigid wages,3 which we
find also increases the magnitude of the output and unemployment response in our
network context. In our paper, the network adjustments on labor productivity provide
an additional amplification channel for how aggregate outcomes respond to productiv-
ity shocks. The marginal product of labor in our model is network adjusted and more
sensitive to productivity shocks than that in a network-less economy. We therefore need
less wage rigidity than in a network-less model.

The rest of the paper is organized as follows. Section 2 describes our model and
3See Bewley (2005) for a survey of empirical evidence.
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defines the equilibrium. Section 3 derives expressions for first-order changes in output
and employment in response to changes in technology and the labor force size. Section
4 describes the data used to calibrate the model and presents illustrative examples
to demonstrate the quantitative importance of our theoretical channels. Section 5
concludes.

2. Model

Our model is a static multi-sector production network model, as in Baqaee and Farhi
(2020) and Bigio and La’O (2020), and features J production sectors, indexed by i. How-
ever, it deviates from these production network models in the labor market structure,
with O occupations indexed by o. Production requires both intermediate inputs and
labor: workers in each occupation need to search for jobs and firms must hire workers.
For simplicity, we assume that workers do not transition from one occupation to another
when they become unemployed and instead search for a jobwithin the same occupation.
In this section, we present the model and characterize its equilibrium. For expositional
clarity, the model features Cobb-Douglas production functions and preferences. We
derive results for general constant returns-to-scale technology in the Online Appendix.

2.1. Households

Preferences. A representative household with homothetic preferences over the goods
from each sector chooses a consumption bundle to maximize utility

U({ci}
J
i=1) =

J∑
i=1

σi log ci,

where ∑
i

σi = 1.

Budget constraint. The representative household inelastically supplies a labor force of
size Ho to occupation o, and pools all income. Its budget constraint is

J∑
i=1

pici =
O∑
o=1

woLo +
J∑
i=1

πi,
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where ci is the final consumption of sector i’s output, pi is the price of sector i’s good,wo
is the wage in occupation o, Lo is the labor used in sector o, and πi are sector i’s profits.

Optimization. The household faces the following optimization problem:

max
{ci}Ji=1

U({ci}
J
i=1),

subject to

J∑
i=1

pici =
O∑
o=1

woLo +
J∑
i=1

πj.

The consumption choices satisfy the first-order condition

σi =
pici∑J
j=1 pjcj

.(1)

2.2. Sectors

Production. Each sector is populated by a representative firm. The firm in sector i
employs workers in occupation o, denoted as Nio, and uses intermediate inputs from
sector j, represented by xij, to produce output yi using constant returns Cobb-Douglas
production functions. For simplicity, we directly refer to the representative firm as a
sector.

yi = AiΠ
J
j=1Π

O
o=1x

αij
ij N

βio
io ,(2)

where

J∑
j=1

αij +
O∑
o=1

βio = 1.

The goods produced by a sector can be used as intermediate inputs by other sectors or
can be consumed by the household.
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Profits. Production costs include labor cost, intermediate input cost, and fixed factor
cost. The profit πi for sector i is

πi = pi yi –
O∑
o=1

woLio –
J∑
j=1

pjxij,

where

Lio = (1 + τo(θo))Nio.

Here, Lio denotes the total number of workers from occupation o hired by sector i,
Nio denotes the number of productive occupation o workers, and τo =

Lio–Nio
Nio

is the
recruiter-producer ratio. As we explain in greater detail in Section 2.3, we assume that
to generate hires, some of the occupation o workers in sector imust work in recruiting.
This drives a wedge between total employment and productive employment, which we
call the recruiter-producer ratio.

Optimization. Weassume that sectors are price takers in both input and outputmarkets.

Sectors choose
{
Nio

}O
o=1 and

{
xij

}J
j=1

to maximize profits:

max
{Nio}Oo=1,

{
xij

}J
j=1

πi

({
Nio

}O
o=1 ,

{
xij

}J
j=1

)
.

The profit maximization problem implies that firms choose inputs so that the expendi-
ture shares match the production elasticities:

αij =
pjxij
pi yi

,(3)

βio = (1 + τo(θo))
woNio
pi yi

.(4)

2.3. Labor Markets

We assume there are O occupations with separate labor markets. Occupation o has
a labor force of Ho possible workers. This is a static, one-shot economy, where all
workers start out unemployed andmust search for jobs. Similarly, to hire workers, firms
must post vacancies, which costs labor to maintain. The exogenous recruiting cost,
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ro, measures the units of labor required for a firm to maintain each posted vacancy
in occupation o. We assume that recruiters come from the same pool of workers and
receive the same wage as the employees they are tasked with hiring. In other words,
occupation o workers hire other occupation o workers.

Matching functions. Hires are generated by a constant returns Cobb-Douglas matching
function. The number of matches depends on the number of workers searching for a
job in occupation o, Ho, and the number of vacancies posted in occupation o, Vo:

ho = min
{
ϕoH

ηo
o V

1–ηo
o ,Ho,Vo

}
,

where Vo is the sum of sectoral vacancy postings vio and occupational labor market
tightness is θo = Vo

Ho .
4 Below, we assume that ho always equals ϕoHηo

o V
1–ηo
o and check

that this condition is not violated in our calibration.
The vacancy-filling rate, Qo, is the fraction of vacancies that end up being filled.

Similarly, the job-finding rate, Fo, is the fraction of workers who end up finding a job.
Both rates can be expressed as functions of tightness:

Qo(θo) =
ho
Vo

= ϕoθ
–ηo
o , Fo(θo) =

ho
Uo

= ϕoθ
1–ηo
o .

Tightness therefore plays a crucial role in determining how costly it is for firms to hire
workers. In a tight labor market, the vacancy-filling rate decreases, meaning that firms
must post more vacancies for a given level of desired employment, thereby increasing
their hiring costs.

Labor supply. A fraction Fo(θo) of the labor force finds a job and is employed at the
end of the period. We call this the labor supply, and it satisfies

Lso(θo) = Fo(θo)Ho.(5)

4Because our model is static, and all workers in the labor force must search for a job within the single
period,Ho plays the same role in our setup as Uo. However, we find similar expressions for labor demand
and labor supply as a function of θ, if we instead define θo = Vo

Uo , a stock of existing employed workers,
and assume balanced labor market flows.
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Labor demand. We assume that firms take occupation-level tightness as given.5 Sup-
pose sector i wants to employ Nio productive workers from occupation o. To hire Nio
productive employees, it must post vio =

Nio
Qo(θo)–ro

vacancies. Since posting each vacancy
requires ro recruiters, once we account for the number of required recruiters, total
occupation o employment in sector i is Ldio = Nio + rovio.

Conveniently, we can relate productive employment to total employment with the
recruiter-producer ratio (the ratio of recruiters to productive workers),6 which does not
depend on any sector-specific terms:

τo(θo) ≡
Ldio – Nio
Nio

=
ro

Qo(θo) – ro
.

Using this expression for the recruiter-producer ratio, total labor demand by sector i
for occupation o is

Ldio = (1 + τo(θo))Nio,

where Nio is determined by the sectors’ profit maximization problem. In the language
of the production network literature, τo acts as an endogenous wedge on sectors’ la-
bor costs. This wedge plays an important role in how shocks propagate through the
production network through labor demand.

Finally, we define aggregate occupation o labor demand as the sum of sectoral labor
demands:

Ldo(θo) =
J∑
i=1

Ldio(θo) =
J∑
i=1
(1 + τo(θo))Nio.(6)

Wages. Inmatchingmodels,workers andfirmsmeet in a situationof bilateralmonopoly.
The resulting mutual gains from trade mean that wages are not determined by the
model’s equilibrium conditions7 and must instead be pinned down by some wage-
setting norm chosen by the researcher. For now, we simply assume that wages are a

5We can think of each sector as being populated by many identical competitive firms so that each
firm only has an infinitesimal impact on aggregate vacancies and therefore on aggregate tightness.

6We follow Michaillat and Saez (2015) and use the notion of the recruiter-producer ratio. Introducing
recruiters frames the recruiting costs explicitly as the number of workers, or the fraction of each worker’s
time, dedicated to recruiting, which we deem realistic.

7Wages are only constrained to fall within a range where both workers and firms benefit from the
match. However, this range can be wide since workers usually have a strong preference for employment
over unemployment, and for firms, the process of finding a new match is costly.
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function of the underlying shocks in our model:

wo = go
(
{Ai}

J
i=1, {Ho}

O
o=1

)
.(7)

Since the underlying shocks in our model are to sectoral productivity and occupational
labor force sizes, this is not a restrictive assumption. It nests both nominally rigid and
real rigid wages, revenue sharing between workers and firms, and fully flexible wages.
For example, nominal wages can be a function of productivity as in Blanchard and Galí
(2010) and Michaillat (2012), or it can be constant.

2.4. Equilibrium

Given exogenous variables
{{
Ai
}J
i=1 , {Ho}

O
o=1

}
and wages wo = go

(
{Ai}Ji=1, {Ho}

O
o=1

)
for

each o, an equilibrium is a collection of allocations {
{
yi
}J
i=1 , {xij}

J
j=1, ci,

{
Nio

}O
o=1, {θo}

O
o=1}

and prices
{
pi
}J
i=1 such that

(i) the allocations solve the household’s problem (Equation 1),

(ii) the allocations solve the firm’s problem (Equations 2–4),

(iii) goods markets clear

yi = ci +
J∑
j=1

xij ∀i ∈ {1, 2, ..., J},(8)

(iv) labor markets, specified by Equations 5 and 6, are in equilibrium

Ldo = Lso ∀o ∈ {1, 2, ...,O},(9)

(v) and wages are set according to Equation 7.

3. Theoretical Results: The Propagation, Aggregation, and
Amplification of Shocks

In this section, we describe our main theoretical results. Shocks are defined as small
proportional changes in the exogenous variables. We first derive the propagation of
technology and labor force shocks at the disaggregated occupation and sector level.
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We then compute the first-order responses of output and unemployment, which are
the main endogenous variables of interest in the model. Subsequently, we present our
aggregation theorem for idiosyncratic shocks. In the Online Appendix, we show how to
generalize the results to any constant returns production function in the case of one
occupation per sector.

Ourmain results highlight the theoretical importance ofmodeling search andmatch-
ing in the labor market and production linkages in conjunction. Labor demand for a
particular occupation depends not only on that occupation’s importance to each sector
but also on the production linkages between sectors. Labor demand in turn affects
tightness in the labor market, creating an endogenous matching wedge that affects
the propagation of shocks. We find that for a knife edge case where wage changes are
exactly proportional to changes in themarginal product of labor, labor market tightness
is unaffected by shocks to productivity or labor supply. As a result, ourmodel behaves as
if there were no search-and-matching frictions in the labor market. However, when this
knife edge case does not hold, search and matching changes the sectoral, occupational,
and aggregate effects of shocks.We find that for plausible parameter values, based on ex-
isting estimates of the recruiter-producer ratio and wage rigidity, search-and-matching
frictions amplify the effects of sector- or occupation-specific shocks.

3.1. The Propagation of Shocks

We are interested in how two sets of endogenous variables—sector-level output and
occupation-level unemployment—change in response to changes in technology and
the labor force size. After determining how sector- and occupation-level output and
unemployment change, we show how to aggregate using our model’s structure.

Our results are entirely first order, and for convenience, we express the first-order
relationship between relative wages and shocks as follows:

d logw –Ld log p = ΛAd logA +ΛHd logH,

where d logw and d logH are O× 1 dimensional vectors capturing first-order changes
in wages and the labor force size. d log p and d logA are J × 1 dimensional vectors
capturing first-order changes in prices and productivity.L is the occupational-share
matrix, a O× J matrix with the share of occupation o workers employed in each sector
along the rows. The (o, j)th entry is

l jo
Lo . This matrix captures each sector’s importance

as an employer of occupation o workers.ΛA andΛH are O× J and O× O coefficient
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matrices that capture how wages respond to technology and labor force shocks to first
order. For instance, the (o, i)th entry ofΛA captures how wages in occupation o respond
to technology shocks in sector i.

We write the first-order approximation in terms of the relative wage—the difference
between the change in nominal occupational wages and the change in occupation-share-
weighted prices—because this is the effective wage that determines labor demand for
workers in each occupation. Aswe showbelow, changes in relative prices are themselves
determined by changes in exogenous variables. Working with price-adjusted wages is
therefore an algebraically convenient but innocuous choice.

The following propositions describe how labor market tightness, output, and unem-
ployment respond to shocks (for a detailed derivation, see Appendix A.1). We start with
first-order changes in tightness, d logθ, which is an important endogenous variable
in matching models that drives how search costs change as labor demand and supply
change. Several recent papers also demonstrate that tightness was a better predictor
of the state of the labor market post-COVID than more standard measures of labor
market slack (Benigno and Eggertsson 2023; ?). Therefore, how tightness changes is
of independent interest, and understanding these changes will also play a key role for
output and unemployment.

PROPOSITION 1. Let Ψ = (I –Ω)–1 denote the Leontief inverse,8 whereΩ is the J × J input-
output matrix. Let ε fN denote the J×Omatrix of production elasticities to labor inputs, and let
M be a diagonal matrix with the Omatching elasticities along the main diagonal. Moreover,
let T be a diagonal matrix with the O recruiter-producer ratios along the main diagonal.

Given occupational labor force shocks d logH =
[
d logH1, · · · , d logHO

]′
and sectoral

productivity shocks d logA =
[
d logA1, · · · , d logAJ

]′
, the first-order responses of labor mar-

ket tightness

d logθ =
[
d log θ1, · · · , d log θO

]′
follows

d logθ = Πθ,Ad logA +Πθ,Hd logH,

where

Πθ,A =
[
I –M – Ξθ

]–1 (LΨ –ΛA) ,

Πθ,H =
[
I –M – Ξθ

]–1 (
LΨε

f
N – I –ΛH

)
,

8The Leontief inverse captures each sector’s importance as a direct and indirect supplier to every
other sector.
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Ξθ = LΨε
f
N [I –M (I + T)] .

The equilibrium response in tightness is jointly determined by changes in labor
supply and labor demand. Labor supply increases when the labor force size rises or
when the job-finding rate rises. Labor demand increases when the vacancy-filling rate
rises, wages fall relative to prices, or productivity rises.

Intuitively, a productivity shock affects labor demand by directly changing a sector’s
productive capacity. A productivity shock also impacts prices and output and therefore
indirectly changes labor usage in other sectors through production linkages. Alge-
braically, the difference between the occupation-share-adjusted Leontief inverseLΨ

and the relative wage coefficientsΛA captures the positive net effect that an exogenous
shock has on labor demand. Similarly,LΨε

f
N –ΛH captures the net effect of shocks to

the size of the labor force. The multiplicative constant
[
I –M – Ξθ

]–1 captures how the
changes in labor demand cascade through the network, accounting for the effects of
search and matching. This term therefore plays the role of a Leontief inverse in our
expression for first-order changes in tightness.

With our expression for changes in tightness in hand, we can now derive first-order
changes in output across the network in Proposition 2.

PROPOSITION 2. The first-order response of sectoral output d log y =
[
d log y1, · · · , d log yJ

]′
follows

d log y = Π y,Ad logA +Π y,Hd logH,

where

Π y,A = Ψ︸︷︷︸
frictionless

+Ψε
f
N

I –M (I + T)︸ ︷︷ ︸
search cost

Πθ,A

︸ ︷︷ ︸
tightness adjustment

,

Π y,H = Ψε
f
N︸︷︷︸

frictionless

+Ψε
f
N (I –M (I + T))Πθ,H︸ ︷︷ ︸
tightness adjustment

.

The first-order impact of a shock on sectoral output can be split into two terms:
one that captures the response in a frictionless economy and one that captures the
effects of search and matching in the labor market through adjustments in tightness. If
tightness remains unchanged after a shock, then the response of output in our model is
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identical to the response in a frictionless economy and depends only on production
parameters. However, when tightness does change, our model’s predictions deviate
from the predictions of a frictionless model. Howmuch output changes when tightness
changes depends on search costs,M (I + T), which determine howmuch more of the
workforce must be allocated to recruiting when tightness rises. In other words, I –
M (I + T) captures how much of any increase in employment leads to an increase in
the productive workforce rather than to an increase in the number of recruiters.

Finally, our expression for changes in tightness allows us to derive the following
expression for changes in unemployment across the O occupations.

PROPOSITION 3. The expression for labor supply implies that first-order changes in end-of-
period occupational unemployment are d logU =

[
d logU1, d logU2, · · · , d logUO

]
follow

d logU = ΠU,Ad logA +ΠU,Hd logH,

where

ΠU,A = –U–1L (I –M)Πθ,A,

ΠU,H = I – U–1L (I –M)Πθ,H,

and U and L are O × O diagonal matrices with the number of unemployed and employed
workers in the pre-shock equilibrium on the diagonal.

Proposition 4 describes how relative prices respond to shocks to productivity, the
labor force size, or factor supplies.

PROPOSITION 4. The first-order responses of relative sectoral and factor prices are pinned
down by labor force, technology, and factor supply shocks up to a numeraire. The first-order
responses in sectoral prices satisfy(

I –Ψε
f
NL

)
d log p = Π p,Ad logA +Π p,Hd logH,

where

Π p,A = Ψ
[
ε
f
N

(
ΛA +MTΠθ,A

)
– I

]
,

Π p,H = Ψ
[
ε
f
N

(
ΛH +MTΠθ,H

)]
.
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In our framework, relative prices are determined by market clearing in a perfectly
competitive environment. The price of a good produced by a particular sector responds
to price changes in all other sectors, withΨ capturing the co-movement and interac-
tion of prices throughout the production network. Moreover, prices are influenced
by the effective labor costs. In models without search and matching, prices respond
directly to change in wages, which corresponds to the Λ terms in the expressions
above. However, in our model, wage adjustments impact prices through an additional
tightness channel, which corresponds to the product of the matching elasticity matrix,
the recruiter-producer matrix, and the Πθ matrices. This is attributed to how wage
adjustments impact labor market tightness, which in turn affects the required number
of recruiters to fill a given number of positions. In addition, the price is also directly
linked to the productivity level in that sector. Thus, a productivity shock impacts the
system of prices directly through production and indirectly through adjustments in
tightness. Shocks to the size of the labor force impact prices solely through adjustments
in labor market tightness.

At the disaggregate level, the interplay between labor market structure and pro-
duction linkages significantly shapes price and allocations responses. In particular,
changes in labor demand depend on how sectors connect to each other through the use
of intermediate goods and what common occupations they hire from. These shifts in
labor demand lead to changes in labor market tightness, which acts as an endogenous
wedge that impacts both output and price responses.

3.2. The Aggregate Impact of Shocks

The expressions above tell us how output and unemployment across sectors and occu-
pations change to first order. They are of independent interest because they describe
which sectors and occupations are likely to be most affected by sectoral shocks given
the labor market’s production function parameters and features.

We can also use those expressions to describe how aggregate output and unem-
ployment change in response to sector- or occupation-specific shocks. With Cobb-
Douglas preferences, the first-order response of aggregate output is given by d log Yagg =
σ′d log y, whereσ′ is a J×1 vector of demand elasticities. Using Proposition 2, we arrive
at the following result for first-order changes in aggregate output.

THEOREM 1. Given idiosyncratic labor force shocks d logH and productivity shocks d logA,
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the log change in real GDP is

d log Yagg = ΠA,Yaggd logA +ΠH,Yaggd logH,

where

ΠA,Yagg = λ′︸︷︷︸
frictionless

+λ′ε fN (I –M (I + T))Πθ,A︸ ︷︷ ︸
tightness adjustment

,

ΠH,Yagg = λ′ε fN︸ ︷︷ ︸
frictionless

+λ′ε fN (I –M (I + T))Πθ,H︸ ︷︷ ︸
tightness adjustment

,

and λ = Ψ′σ denotes the sectors’ sales shares.

PROOF. The result follows from d log Yagg = σ′d log y and Proposition 2.

Note that the matrix product between the Leontief inverse and the demand elastici-
ties equals the sales shares. This property results from the household’s maximization
problem, the firms’ profit maximization decision, goods market clearing, and the Cobb-
Douglas production functions. Therefore, the aggregate impact of productivity and labor
force shocks can be summarized as the sales-share-weighted impact of these shocks on
sectoral output directly through production and indirectly through labor markets. This
result is reminiscent of Hulten’s theorem, which posits that in frictionless competitive
economies, the first-order effect of a productivity shock to an industry on aggregate
output equals that industry’s sales share (Hulten 1978). In fact, we show in Section 3.3
howHulten’s theorem holds in a knife edge case of our model. Whenever tightness does
not change in response to shocks, Hulten’s theorem holds.

In addition to output, we are interested in how aggregate unemployment responds
to sector-specific shocks. Using the results in Proposition 3, we can derive changes in
aggregate unemployment.

COROLLARY 1. Given idiosyncratic labor force shocks d logH and productivity shocks d logA,
the first-order response in aggregate unemployment is

d logUagg = ΠA,Uaggd logA +ΠH,Uaggd logH,
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where

ΠU,A = –1′
U

Uagg
U–1L (I –M)Πθ,A,

ΠU,H = 1′
U

Uagg
[
I – U–1L (I –M)Πθ,H

]
,

where 1 is a O× 1 vector of ones and Uagg is the aggregate number of unemployed workers
before the shock.

PROOF. Follows from d logUagg = 1′ U
Uagg d logU and Proposition 3. See Appendix A.2

for details.

Intuitively, the change in aggregate unemployment is a weighted average of the
first-order changes in sectoral unemployment.

3.3. The Role of Search and Matching in Amplifying the Response of Aggregate
Output

Hulten (1978)’s theorem posits that in an efficient economy, the first-order effect of a
productivity shock to an industry’s aggregate output equals that industry’s sales share.
In this section, we compare our results to Hulten’s theorem and examine how the
interaction between production linkages and labormarket search andmatching impacts
aggregate output. Specifically, we analyze the conditions under which Hulten’s theorem
holds as well as when the labor market structure interacts with production linkages to
amplify the aggregate impact of shocks.

In the discussion following Proposition 2, we described how labor market inefficien-
cies impact output through adjustments in tightness. Tightness generates an additional
wedge between wages and the marginal product of labor. This additional wedge exists
because in tighter labor markets, firms must dedicate more resources to recruiting,
which increases the marginal cost of labor. When network-price-adjusted wages change
in exact proportion to the marginal product of labor, tightness remains constant. Be-
cause tightness is not affected, search costs do not vary, thereby upholding Hulten’s
theorem.

COROLLARY 2. Hulten’s theorem holds for technology shocks whenever network-price-adjusted
wages change in exact proportion to the network-adjusted marginal product of labor, that is,
when

d logw –Ld log p = Ld logMP,
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where d logMP is a matrix of changes to the marginal product of each type of labor in each
sector. Furthermore, when this condition holds, aggregate changes in response to labor force
and factor supply shocks do not depend on the costly search-and-matching process.

PROOF. The derivative of production with respect to labor inputs, along with the firms’
first-order conditions, imply that the network-adjusted marginal product of labor satis-
fies

Ld logMP = TMd logθ + d logw –Ld log p.

Imposing that network-price-adjustedwage changes are exactly proportional to changes
in the network-adjusted marginal product of labor implies

TMd logθ = 0.

TM is a diagonal matrix with non-zero diagonal elements. Therefore,

d logθ = 0.

Since search-and-matching operates through changes in d logθ, this implies that search-
and-matching has no impact on the propagation of shocks. In particular, in this case

d log Y = λ′
[
d logA + ε fNd logH

]
.

The aggregate output response to technology shocks is λ′d logA, which is exactly Hul-
ten’s theorem. The aggregate output response to the other shocks depends only on
production parameters; the labor market structure plays no role.

When wages do not respond to shut off changes in tightness, search and match-
ing impacts the aggregation of idiosyncratic shocks. The following corollary formally
characterizes the search channel of idiosyncratic shocks.

COROLLARY 3. When wages do not respond exactly proportionally to the network-adjusted
marginal product of labor, a matching labor market structure generates deviations from
Hulten’s theorem, captured by

Πsearch,A = λ′ε fN (I –M (I + T))
[
I –M – Ξθ

]–1 (LΨ –ΛA) ,

Πsearch,H = λ′ε fN (I –M (I + T))
[
I –M – Ξθ

]–1 ([
LΨε

f
N – I

]
–ΛH

)
.
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PROOF. Follows from Theorem 1 and 2.

The search channel is a product of sales shares λ, the labor elasticity matrix ε fN , the
search cost term (I –M (I + T)), and the first-order response in labor market tightness.
We want to examine whether the search channel amplifies the aggregate impact of
shocks. Before we proceed, we first define amplification.

DEFINITION 1. The search channel amplifies the shock’s impact ifΠsearch,x > 0 element-wise.

When this definition holds, a shock to any sector or occupation also impacts output
through the search channel. This impact, as the name amplification suggests, has the
same sign as the shock.

In theory, whether amplification occurs depends on themagnitudes of the matching
elasticities M, the recruiter-producer ratio T, production structures, occupational
structure, and the wage schedules. We believe that the empirically plausible case is that
wages are somewhat rigid. By this, we mean the following.

DEFINITION 2. Wages are rigid in response to

• technology shocks ifLΨ –ΛA is non-negative, with one strictly positive element in each
column, and

• labor force shocks ifLΨε
f
N – I –ΛH is non-negative, with one strictly positive element in

each column.

In words, wages are rigid when they adjust less than the occupation and network-
adjusted labor productivity. This definition of rigidity is less restrictive than those
typically found in the search-and-matching literature. Take the wage response to pro-
ductivity as an example. In Hall (2005), Blanchard and Galí (2010), and Michaillat (2012),
wages are rigid if they adjust less than proportionally to changes in productivity. How-
ever, in a production network—takeL = I, for example—the diagonal elements of the
Leontief inverseΨ can often be greater than 1. Therefore, a wage schedule that is viewed
as flexible in the conventional sense can be seemed as rigid here. We also consider
wages as rigid overall even if all rows inLΨ–ΛA are zero but one. That is, our definition
of wage rigidity allows wages to adjust exactly proportionally to productivity, i.e., to
be flexible, in every sector but one. Existing estimates suggest that wages are indeed
rigid by our definition. For instance, Haefke et al. (2013) estimate the wage elasticity to
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productivity to be around 0.8 for new hires and 0.24 for all workers.9

Now, we characterize when the search channel amplifies different types of shocks:

PROPOSITION 5. If (I +T)–1 >M and wages are rigid, the search channel amplifies the shock.

PROOF. When (I + T)–1 > M, (I –M (I + T)) is greater than 0 on the diagonals, the
equilibrium adjustment coefficients

[
I –M – Ξθ

]–1 are non-negative element-wise and
positive on the diagonals (shown in Appendix A.3).

When wages are rigid and labor markets are slack, the search channel amplifies
the aggregate impact of idiosyncratic shocks on output. Intuitively, rigid wages make
workers more attractive to firms following a positive technology shock, as wages adjust
less than the increase in labor productivity. In slack labor markets, fewer recruiters are
needed to hire additional workers, leading to an increase in employment and a more
substantial output response than predicted under Hulten’s theorem. Conversely, in tight
labor markets where recruiting costs are high, the additional recruiters needed to hire
an additional worker may outweigh the benefits. In such scenarios, the search channel
could dampen rather than amplify the effect shocks. For instance, firms attempting
to take advantage of the beneficial wages by posting additional vacancies may end
up hiring fewer productive workers and more recruiters. In this case, employment
increases but output actually increases less than what Hulten’s theorem would suggest.

Quantitatively interpreting the condition (I + T)–1 > M is difficult given the static
setup of our model. To ground our analysis on the effect of labor market tightness
on shock propagation based on empirically plausible model parameters, we extend
the model by modifying the labor market block with a steady-state, balanced flows
assumption in the Online Appendix. We allow some workers to be employed initially
but assume the economy starts out in a steady state where the number of workers who
flow into unemployment equals those who flow out. We then analyze how steady-state
employment changes after a shock. All key equations remain qualitatively identical to
our static formulation, except that the model parameters can now be interpreted in the
context of empirical estimates.

The equivalent condition in our balanced flows specification is u(u + T)–1 > M,
where u is a matrix with the unemployment rates in each occupation along the diagonal.
Instead of requiring I –M (I + T) > 0 on the diagonals, we now need u –M (u + T) > 0

9One important case where our definition of wage rigidity does not apply is for revenue sharing,
as in Diamond (1982a). This type of revenue sharing results in wage changes that are proportional to
productivity changes. Nevertheless, our definition of rigidity can still hold even if wages are determined
through revenue sharing in all sectors except one.
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because the initial unemployment rate is no longer 1. Thus, the dependence of amplifi-
cation on labor market tightness is clearer. Suppose the matching elasticity is 0.7 and
the recruiter-producer rate equals 2.3%, both in the range of plausible estimates from
Petrongolo and Pissarides (2001) and Landais et al. (2018). If the unemployment rate
is 6%, then the search channel amplifies productivity shocks. However, if it is 3%, the
search channel can dampen the productivity shock.10

4. Calibration

So far, we have established qualitatively that incorporating search frictions in a produc-
tion network economy can amplify or dampen the disaggregate and aggregate economic
impact of microeconomic shocks, depending on labor market tightness. In this section,
we test the quantitative importance of the search channel by calibrating ourmodel to the
U.S. economy and exploring the response of output and unemployment to productivity
shocks.

To allow a more direct fit to the data, we make two minor adjustments to the model
outlined in Section 2. First, we account for two additional factors of production— capital
and energy—allowing us to match the production elasticities to intermediate inputs and
labor. Second, rather than assuming that all workers begin unemployed, we assume the
labormarket is in a steady statewith balancedflows fromemployment to unemployment
and back. This allows for a more direct match between the data on employment and
unemployment by sector and themodel, without substantially changing the structure of
themodel presented above. We outline the specific adjustments required to incorporate
balanced labor market flows in the Online Appendix.

4.1. Labor Market Parameters

Given the large number of parameters resulting from the interaction between the
productionnetwork and labormarkets,we relegate the bulk of our calibrationprocedure
to the Online Appendix. This and the following section briefly discuss data sources and
calibration for the key labor market and production parameters.

In this calibration exercise, we split the labor force into major occupation categories
and allow firms in each sector to use a mix of the different major occupations in pro-
duction. Workers are constrained to remain in one occupation but are not constrained
10In the Online Appendix, we show that when there is just one occupation per sector, u –M (u + T) < 0,

and wages are rigid and proportional to LΨ, the search channel dampens the shock.
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to remain in just one sector due to firms in different sectors using multiple occupations
as an input. In general, our model is flexible, allowing for modifications to the labor
market specification to adapt to various scenarios. For example, labor markets can be
assumed to be fully rigid geographically to study the localized impact of industry shocks.
The quantitative importance of our search channel remains robust across different
labor market specifications. For instance, our findings still hold if each sector hires just
one unique occupation, eliminating sector-to-sector worker flows.

We choose an occupation level calibration because sector-to-sector labor transitions
are a potentially important feature of the labor market in many countries. For instance,
in the U.S. about 12%–20% of jobs switchers also change industries at the one-digit level
(Kambourov andManovskii 2008; Parrado et al. 2007). Neffke et al. (2017) find that nearly
59% of German job movers change industry at the most aggregate German industry
grouping. These sector-to-sector flows are possible in an occupation calibration because
even though workers remain in the same occupation, they may transition to another
sector when they switch jobs.

Allowing for realistic sector-to-sector flows of workers comes the cost of high data
requirements at the major occupational level. In this calibration, we address these
requirements by imputing certain occupational parameters from sector-level data. In
particular, we use vacancy and hiring data from the JOLTS, which provides survey-
based measures of job openings and hires at a monthly frequency, available from
December 2000 to February 2023. These survey data are available for 13 industries that
roughly correspond to the two-digit NAICS industry classifications. We use sector-level
unemployment data from the CPS. These data cover 13 sectors at a monthly frequency
over the same time frame as the JOLTS data. Finally, we use occupation-level data from
the BLS’s 2021 OEWS for sectors at the two- and three-digit NAICS classification level to
construct sector-by-sector major occupational employment and wages.

We define a major occupation to be an occupation at the two-digit Standard Occu-
pational Classification level and impute occupation level parameters where they are
not available using sector level data and occupation-by-sector employment shares. We
assume that the total number of unemployment, vacancy, and recruiters for an occupa-
tion is the sum of unemployment, vacancy, and recruiters across sectors, weighted by
the sectors’ labor expenditure shares of that particular occupation. Figure 1 plots the
resultingL and ε fN matrices, which respectively capture each sectors’ importance as an
employer of each occupation and each occupations importance in the production of
each sector.
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FIGURE 1. Occupation shares and occupation elasticity for different industries.

A. Occupation share B. Occupation elasticity of production

Notes: Panel A shows the share of given occupations used by different industries. The (i, j)th element
denotes the share of occupation j employed by sector i. Each column sums to 1. Panel B presents the
occupation elasticity of production. The (i, j)th element denotes the share of labor expenditure that sector
i spends on workers in occupation j. Each row sums to 1.

We use the number of HR workers employed in each sector as a proxy for recruiting
efforts, which underestimates the total recruiting activities, as non-HR workers may
also participate in hiring new workers. This underestimation of recruiting efforts could
weaken the power of the search-and-matching channel in our model, and we therefore
view it as a conservative assumption.

Finally, we estimate the occupation-specific matching elasticities from imputed oc-
cupation hires, vacancies, and unemployment at the monthly frequency. The matching
efficiency, ϕo, does not affect any of our results to first order. We therefore allow the
matching efficiency to equal to the residual from this estimation, which ensures that
the number of hires does not exceed the number of vacancy postings or the number of
unemployed workers.

4.2. Production parameters

Thanks to our Cobb-Douglas specification, our model’s production parameters are easy
to map into readily available data on sector level input usage. The BEA Make and Use
tables at the three-digit NAICS level allow us to calculate the intermediate input intensity
of each sector, the labor intensity of each sector, and the elasticity of final consumption
demand to each sector’s output. We use employee compensation, recorded in the Use
table, to calculate labor elasticities.

In our calibration, we consider two additional factors of production: capital and
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energy. Capital and energy shares for the two- and three-digit NAICS classification are
available in the BEA-BLS Integrated Industry-Level Production Accounts (KLEMS). We
can extend our model to include additional non-labor factors of production without
meaningfully changing any of the structure or results in the previous sections. We
include additional factors of production in our calibration to obtain a better match
to the labor and intermediate input elasticities, which play a key role in the effects of
sector-specific shocks.

Although the JOLTS and the CPS include labor market data at a level corresponding
roughly to the two-digit NAICS classification, this correspondence is not always exact.
Whenever this is the case, we use data at the two- or three-digit NAICS classification
level and aggregate back up to match the 13 CPS industries (Horowitz and Planting
2009).

4.3. Wage Schedule

In our model economy, wages play an important role in how shocks propagate, and
how they adjust determines the response in tightness after an economic shock. In fact,
as Theorem 2 shows, for the right assumption about wages, search frictions can have
no effect whatsoever on shock propagation. However, in general, the degree of wage
flexibility required by Theorem 2 is rare. Haefke et al. (2013) estimate the elasticity of
wages of job movers with respect to productivity to be 0.7. We view this as a reasonable
benchmark for the degree of wage flexibility but show below that our results are robust
to alternative assumptions aboutwage flexibility. In the context of ourmodel, we assume
that the change in real wage is 0.7 times the log change in marginal product of labor:

d logw –Ld log p = 0.7d logMP.

Figure 2 reports the calibrated input-outputmatrixΩ, showing that a sector’s production
usually relies on intermediate goods produced by other sectors. These parameters are
calibrated by computing each sector’s expenditure share on commodities produced by
other sectors.
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FIGURE 2. Input-output table for major sectors, roughly corresponding to the NAICS
two-digit sectors.

Notes: The (i, j)th element on the heat map denotes the share of sector i’s revenue spent on intermediate
goods produced by sector j.

We show in the Online Appendix that our results are robust to alternative wage
assumptions.

4.4. The Effect of Productivity Shocks

In this section we characterize the quantitative importance of combining search-and-
matching with production networks by introducing productivity shocks. To assess the
quantitative importance, we need appropriate baseline economies to compare our
results to. To this end, we report results for three specifications in our figures below:

(i) Linkages and Frictions: Our full model featuring production linkages and search-
and-matching.

(ii) Linkages Only: A network model without search-and-matching (M = I).

(iii) Frictions Only: A multi-sector search-and-matching model with no production
linkages (Ψ = I).

The top panel of Figure 3 plots the response of aggregate output and unemployment
to a 1% productivity shock in each of our 13 sectors. The bottom panel plots the response
of output and unemployment across sectors and occupations to a 1% productivity shock
in the durable manufacturing sector. The orange bars represent the benchmark with
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only production linkages, while the green bars represent the benchmark with only labor
market frictions. The blue bars represent our model, which features both production
linkages and search-and-matching frictions.

Both output and unemployment respond more to technology shocks once we ac-
count for both production linkages and labor market frictions. This is true across all
sectors, and the amplification is substantial. For instance, in our model, aggregate
output and unemployment respond more than twice as much to a productivity shock
in the professional and business services sector than in either of the two benchmark
cases.

More interestingly, accounting for both production linkages and labor market fric-
tions changes the relative importance of different sectors for aggregate output and
unemployment. A researcher focusing on amultisector searchmodel with occupational
labor markets and no production linkage might conclude that the education and health
services sector is the most important for both aggregate output and unemployment.
However, because it is not an important supplier to other sectors in the production econ-
omy, the education and health services sector is only the fifthmost important sector for
aggregate output and the second most important sector for aggregate unemployment,
when we account of production linkages.

Conversely, a researcher focusing on an efficient production network would con-
clude that the non-durable manufacturing sector is the most important for output.
However, because the non-durablemanufacturing sector primarily employs production
workers, who are not a particularly important labor input for any non-manufacturing
sector, oncewe account for occupational labormarket frictions it is only the fourthmost
important sector for output. On the other hand, they would overlook the importance of
the wholesale trade sector because of its relatively small Domar weight—its output is
not not a major component of final consumption. Once we account for the occupational
labor market structure, because it is an important employer of sales and transporta-
tion workers, this sector has non-negligible effects on aggregate unemployment, and
therefore also on aggregate output. In other words, network centrality is no longer a
sufficient measure of a sectors importance to aggregate output once we allow for amore
complex labor market structure.

28



FIGURE 3. Response of output and the unemployment rate to a 1% shock to technology
in the durable manufacturing sector.

A. Aggregate output response B. Aggregate unemployment rate response

C. Sectoral output response - durables shock D. Unemployment rate response - durables shock

Combining production linkages with a realistic segmented and frictional labor
market setup therefore improves our understanding ofwhich sectors aremost important
for aggregate output and unemployment. We account for both each sectors importance
as a direct and indirect supplier to other sectors and labor market linkages between
sectors that substantially alter how shocks propagate and aggregate. Crucially, the effects
of productivity shocks once we combine network linkages with search-and-matching
is not simply the sum of the effects in the two baseline models. Consider, for instance,
a shock to the professional and business services sector. Our model predicts that the
effect of this shock on aggregate output is larger than the sum of the effects in our two
baselines.

Figure 4 plots the transpose ofLΨ can help explain why the professional services
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sector is so important in our model. LΨ captures the network adjusted productivity
gain after a shock d logA, reflecting both how important the shocked sector is to each
other sector in the production network,Ψ, and how important each sector is to each
type of labor. Despite being only the fourth most important sector for output in a
pure production network and the third most important sector for unemployment in a
multi-sector search-and-matchingmodel, the professional services sector is particularly
important because it has a large impact on the network adjusted productivity of many
occupations. It is itself a large employer of many occupations, and is connected through
the production network to other large employers, boosting the effective productivity of
many types of labor. While a multi-sector search-and-matching model captures the first
round employment effects, it fails to capture the second round effects coming from the
sectors that the professional services sector is connected to. The production network
model accounts for linkages through intermediate inputs, but fails to account for the
employment effects.

FIGURE 4. Occupation-share-adjusted Leontief inverse.

Notes: The (i, j)th element on the heat map denotes the network-adjusted productivity gain for workers in
occupation j in response to a productivity shock in sector i.

The bottom panel of figure 3, which plots the response of sector level output and oc-
cupation level unemployment to a 1% productivity shock in durablemanufacturing—the
closest analog to our example from the introduction—demonstrates that the interesting
dynamics persist at the dis-aggregate level, particularly for unemployment. Allowing
for both production linkages and labor market frictions substantially amplifies the re-
sponse of unemployment in occupations important to durable manufacturing and leads
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to widespread declines in unemployment across all occupations. In our full model, the
unemployment rate declines by 0.4 percentage points for engineers, by 0.7 percentage
points for production workers, and by at least 0.1 percentage points in every occupation.
As a result, the aggregate unemployment rate falls by 0.2 percentage points.

5. Conclusion

Modern economies are characterized by intricate production networks and labor mar-
ketsmarked by frictional and segmentation. Our analysis demonstrates that considering
both aspects shifts our understanding of shock transmission, both quantitatively and
qualitatively. The extent to which matching frictions impact network propagation de-
pends on wage assumptions, revealing that, generally, labor market frictions amplify
productivity shocks except in scenarios of extreme labor market tightness. By calibrat-
ing our model to U.S. data, we find that this effect is be sizable and changes the relative
importance of different sectors for aggregate output and unemployment.

This framework opens up several venues for future research. First, it would be
interesting to explore the business cycle implications of our model, such as how the
interaction between production linkages and search frictions impact the cyclical move-
ments of workers across sectors, occupations, and regions. Additionally, exploring the
non-linearities and higher-order propagation of our model warrants further investiga-
tion. Last, while our currentmodel cannot speak to the effect on the price level, we hope
to extend the model by incorporating nominal rigidities to help paint a realistic picture
of the post-COVID inflation episode, which involves interesting interactions between
production sectors and labor markets. We are currently working on an extension to our
model to address the post-Covid inflation episode.
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Appendix A. Proofs

A.1. Proofs for Propositions 1, 2, 3, and 4

A.1.1. Tightness Propagation

Labor market clearing implies that changes in labor demand have to equal changes in
labor supply:

d logLso(θ,H) = d logLdo(θ,A).

εFoθo
d log θo + d logHo =

J∑
i=1

l io
Ldo
d log l io(θo)

For every sector i we have

d log l io(θo) = d log pi – d logwo + d log yi

Which, stacking over occupations, implies that

d logLd(θ) = Ld log y –
[
d logw –Ld log p

]
since

∑J
i=1

l io
Ldo

= 1 for all o. Plugging in for d log y gives

d logLd(θ) = LΨ
[
d logA + ε fN (F +QT) d logθ + ε fNd logH

]
–
[
d logw –Ld log p

]
Labor market clearing implies

Fd logθ + d logH = LΨ
[
d logA + ε fN (F +QT) d logθ + ε fNd logH

]
–
[
d logw –Ld log p

]
Which pins down first order changes in log tightness as

d logθ =
[
F – Ξθ

]–1 [
LΨd logA –

[
d logw –Ld log p

]
+
[
LΨε

f
N – I

]
d logH

]
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Where Ξθ = LΨε
f
N [F +QT]. Rearranging yields Proposition 1.

A.1.2. Output Propagation (Proposition 2)

The following relationship between Domar weights, λi =
pi yi
G , and sales shares must

hold in every sector:

pjxij = ε
f i
xijλiG.

Log-linearizing and using that this condition must hold in any two sectors i and j we
can write

d log xij = d log λi – d log λj + d log yj

Plugging back into the production function,

d log yi = d logAi +
O∑
o=1

ε
f i
Nio
d logNio +

J∑
j=1

ε
f i
xijd log yj

Using the definition of labor demand,

∑
i

l io
Lo
d logNio = d logL

d
o + τo(θo)ε

Qo
θo
d log θo

Log linearizing the labor usage ratio for an occupation by two different sectors

l io
l jo

=
ε
f
Nio

λi

ε
f
Njo

λj

gives

d log l io = d log l jo

Also since, d log l io = d logNio + d log(1 + τo(θo)) = d log l jo = d logNjo + d log(1 + τo(θo)),
we have that d logNio = d logNjo.
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Using the labor market clearing condition, and the definition of labor supply,

d logNio
∑
k

l ko
Lo︸ ︷︷ ︸

=1

=
(
εFoθo

+ τo(θo)εQoθo
)
d log θo + d logHo

Plugging this back into the linearized production function gives:

d log yi = d logAi +
O∑
o=1

ε
f i
Nio

[(
εFoθo

+ τo(θo)εQoθo
)
d log θo + d logHo

]

+
J∑
j=1

ε
f i
xijd log yj

Stacking over sectors gives,

d log y = d logA + ε fN (F +QT) d logθ + ε fNd logH +Ωd log y

Which implies

d log y = Ψ
(
d logA + ε fN (F +QT) d logθ + ε fNd logH

)
Rearranging and combining with Proposition 1 yields Proposition 2.

A.1.3. Unemployment Propagation

Occupational unemployment is given by:

Uo = Ho – Lo,

which implies that:

d logUo =
Ho
Uo

d logHo –
Lo
Uo
d logLo.

Using the definition for labor supply, we have that:

d logUo =
Ho
Uo

d logHo –
Lo
Uo

((1 – ηo) d log θo + d logHo)

= d logHo –
Lo
Uo

(1 – ηo) d log θo
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Alternatively, we can rewrite the expression above in terms of job-finding rates:

d logUo = d logHo –
f o(θo)

1 – f o(θo)
(1 – ηo) d log θo.

Rearranging and stacking over occupations yields Proposition 3.

A.1.4. Price Propagation (Proposition 4)

Plugging in Equation 4 and Equation 3, the first order conditions for optimal input usage,
into the log-linearized production function, using the fact that the sum of elasticities
equals one for constant returns to scale technolog, y and ε

f i
xijd log ε

f i
xij = dε

f i
xij , gives

d log yi =
[
d log yi + d log pi

]  O∑
o=1

ε
f i
Nio

+
N∑
j=1

ε
f i
xij


︸ ︷︷ ︸

=1 by crts

+

 O∑
o=1

dε f iNio +
N∑
j=1

dε f ixij


︸ ︷︷ ︸

=0 by crts

–
O∑
o=1

ε
f i
Nio

[
d logwo + d log(1 + τo(θo))

]
–

N∑
j=1

ε
f i
xij

[
d log pj

]
+ d logAi,

Rearranging terms gives

d log pi =
O∑
o=1

ε
f i
Nio

[
d logwo – τo(θo)εQoθo d log θo

]
+

J∑
j=1

ε
f i
xij

[
d log pj

]
– d logAi

Stacking equations over sectors, we can write

d log p = ε
f
N
[
d logw –QTd logθ

]
+Ωd log p – d logA

Which implies

d log p = Ψ
[
ε
f
N
[
d logw –QTd logθ

]
– d logA

]
Or equivalently(

I –Ψε
f
NL

)
d log p = Ψ

[
ε
f
N
[
d logw –Ld log p –QTd logθ

]
– d logA

]
Rearranging yields Proposition 4.
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A.2. Proof for Theorem 1 and corrollaries

From household’s maximization problem, pici = εDciG. Combining with the expression
for Domar weights gives:

λ = Ψ′εDc .

The aggregate labor force, employment, and unemployment areHagg =
∑O
o=1Ho, Lagg =∑O

o=1 Lo, and Uagg =
∑O
o=1Uo. Log changes in aggregates are given by

d logHagg =
1

Hagg
H′d logH

d logLagg =
1

Lagg
L′d logL

d logUagg =
1

Uagg
U ′d logU

Substituting in for d logL gives

d logLagg = ΠLagg,Ad logA +ΠLagg,Hd logH

Where

ΠLagg,A =
1

Lagg
L′

[
LΠ y,A –ΛA

]
ΠLagg,H =

1
Lagg

L′
[
LΠ y,H –ΛH

]
And

d logUagg = ΠUagg,Ad logA +ΠUagg,Hd logH

Where

ΠUagg,A =
1

Uagg
U ′ [ΛA –LΠ y,A

]
ΠUagg,H =

1
Uagg

U ′ [I +ΛH –LΠ y,H
]
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A.3. Amplification Proofs

We want to show that (I –M – Ξθ)–1, where Ξθ = LΨε
f
N [I –M (I + T)], is non-negative

element-wise.
We have

(I –M – Ξθ)–1 =
(
I – Ξθ (I –M)–1

)–1
(I –M)–1

Since (I –M)–1 is a diagonal matrix with positive diagonal elements, it suffices to
show that I – Ξθ (I –M)–1 is an M-matrix, since M-matrices are inverse non-negative.

I –Ξθ (I –M)–1 is a Z-matrix since its off-diagonals are negative. If I –Ξθ (I –M)–1 is
diagonally dominant then it is also and M-matrix. Let aij denote the (i, j)-th element of
I – Ξθ (I –M)–1. Row diagonal dominance requires:

|aii| ≥
∑
j ̸=i

|aij| ∀i

For simplicity, we consider the case with one occupation per sectorL = I, but the
logic behind this proof follows for generalL.

To start with, we show that the row sums ofΨε
f
N is less than or equal to 1.

Let Bij denote the (i, j) – th element of (I –Ω), and Ψij the (i, j) – th element of Ψ, and∑
k

ΨikBkj = δij

We have: ∑
k

Ψik
∑
j

Bkj =
∑
k

∑
j

ΨikBkj =
∑
j

δij = 1,

sinceΨ is the inverse of (I –Ω).
For each k, the (k, k)-th element of ε fN , βkk, is smaller than or equal to

∑
j Bkj by the

constant returns of the production functions and non-negative factor shares.
Thus, for each row i in the matrixΨε

f
N , the row sum is given by:∑

k

Ψikβkk ≤ 1
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Let xij denote the (i, j)-th element of the matrix Ψε
f
N , row diagonal dominance

requires that for each row i,

1 – xii

(
1 – ηi

(
1 + τi

))
1 – ηi

≥
∑
j ̸=i

xij

(
1 – ηj

(
1 + τj

))
1 – ηj

Rewriting it yields:

1 ≥
∑
j

xij

(
1 – ηj

(
1 + τj

))
1 – ηj

,

which holds because τj ≥ 0.
Since τj > 0, we actually have a strict inequality, where

1 >
∑
j

xij

(
1 – ηj

(
1 + τj

))
1 – ηj

.

Now we can look at the case for generalL. We only need to show that the row sum
ofLΨε

f
N is no greater than 1.

First, we have the (i, j)-th element ofLΨ is:

J∑
k=1

LikΨkj

Thus, the (i, q)-th element ofLΨε
f
N is:

J∑
j=1

βjq

 J∑
k=1

LikΨkj


The row sum for the i-th row ofLΨε

f
N is thus:

O∑
q=1

J∑
j=1

βjq

 J∑
k=1

LikΨkj

 =
J∑
k=1

Lik

J∑
j=1

Ψkj

O∑
q=1

βjq
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By definition, for any j,
∑O
q=1 βjq ≤

∑
j Bkj, which implies that

J∑
k=1

Lik

J∑
j=1

Ψkj

O∑
q=1

βjq ≤
J∑
k=1

Lik ≤ 1

In fact, we can also show that I – Ξθ (I –M)–1 has value at least 1 on the diagonals.
This can be proven by rewriting I – Ξθ (I –M)–1 as a Neumann series, which converges
because

1 >
∑
j

xij

(
1 – ηj

(
1 + τj

))
1 – ηj

.

Appendix B. Results for general CRTS production functions and one
occupation per sector

In this section we generalize our results to any constant returns to scale production
function, under the assumption that there is one type of labor per sector. This general-
ization results in additional terms that capture how the production elasticities change
when shocks hit the economy. The expressions are otherwise similar to above. The
model setup is identical, we just do not impose Cobb-Douglas technology and instead
impose O = J.

B.1. Price changes

First order changes in prices remain largely unchanged and satisfy(
I –Ψε

f
N

)
d log p = Ψ

[
ε
f
N
[
d logw – d log p –QTd logθ

]
– d logA

]
B.2. Sales Share Propagation

We can rewrite the goods market clearing condition in terms of Domar weights:

yi = ci +
J∑
j=1

xji
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⇒
pi yi∑J
k=1 pkck

=
pici∑J
k=1 pkck

+
J∑
j=1

pixji
pjxj

pjxj∑J
k=1 pkck

⇒ λi = εDci +
J∑
j=1

ε
f j
xjiλj,(A1)

where λi =
pi yi∑J
k=1 pkck

is the Domar weight of sector i.

By stacking (A1) for each sector, we get the following expression for Domar weights
across the production network.

λ′ = εDc
′
+ λ′Ω

We can see how Domar weights change across the production network by totally differ-
entiating

dλ′ = dεDc
′
+ dλ′Ω + λ′dΩ

⇒ dλ′ =
[
dεDc

′
+ λ′dΩ

]
Ψ(A2)

The Domar weights will help us express how shocks propagate to output.

B.3. Output changes

We can now write changes in output in terms of changes in tightness, technology, the
size of the labor force, and changes in production elasticities, including changes in
Domar weights, as

d log y = Ψ
(
d logA + ε fN (F +QT) d logθ + ε fNd logH

)
–Ψd logE +Ψ (diag (Ω1) –Ω) d logλ

Where 1 is a J × 1 vector of ones and d logE is the J × 1 vector of diagonal elements of
ε
f
Nd log ε

f
N
′
.
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B.4. Tightness changes

Much like output, changes in tightness now also depends on changes in the elasticities
of the production functions. The expressiong for changes in tightness is

d logθ =
[
F – Ξθ

]–1 [
Ψd logA –

[
d logw – d log p

]
+
[
Ψε

f
N – I

]
d logH

]
+
[
F – Ξθ

]–1 [diag(Ld log ε fN) +Ψ [
(diag (Ω1) –Ω) d logλ – d logE

]]
Where Ξθ = Ψε

f
N [F +QT]. Notice, all terms in the second line are zero assuming

Cobb-Douglas production technology.

B.5. Aggregation

Aggregate output now satisfies

d log Y = εDc
′
d log c

= εDc
′ (
d log εDc d log y – d logλ

)

Appendix C. Data and Calibration Details

This appendix describes the balanced flows formulation of our model and the data in
greater detail.

C.1. Balanced Flows Formulation

To bring our model closer to the data, we alter the static setting of our labor markets
to a balanced flow setup. This doesn’t change the qualitative theoretical results, but
allows us to calibrate the model in a data-consistent way. Specifically, this allows us to
use unemployment, instead of work force, as the denominator in tightness. Below, we
will outline the balanced flow setup and point out how it will alter our propagation and
aggregation formulae.

Matching Functions. Now, hires are generated by a constant returns Cobb-Douglas
matching function. The number of matches depends on the number of unemployed
workers searching for a job in occupation o, Uo, and the number of vacancies posted in
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occupation o, Vo,

ho = ϕoU
ηo
o V 1–ηoo .

Vo is the sum of sectoral vacancy postings vio and occupational labor market tightness
is θo = Vo

Uo .
Both the vacancy-filling rateQo and job-finding rateFo can be expressed as functions

of tightness.

Qo(θo) =
ho
Vo

= ϕoθ
–ηo
o , Fo(θo) =

ho
Uo

= ϕoθ
1–ηo
o .

Labor Supply. The balanced flow assumptions says that the number of workers being
separated from their jobs each period is equal to the number of unemployed workers
finding a job:

s × Lo = Fo(θo)× Uo = Fo(θo)× (Ho – Lo),

where s is an universal separation rate for all workers.
This implies that:

Lso =
Fo(θo)

s + Fo(θo)
Ho

d logLso = d logHo + ε
Fo
θo
d log θo –

Fo(θo)
s + Fo(θo)

εFoθo
d log θo

= d logHo +
s

s + Fo(θo)
εFoθo

d log θo

= d logHo +
s

s + Fo(θo)
(1 – ηo)d log θo

Labor Demand. The balanced flow assumption on the labor demand side assumes
that the number of jobs being filled equals the number of workers separated from an
occupation for each sector:

Qo(θo)× Vio = s × Lio

This implies that the number of recruiters in each sector for each occupation Rio is

Rio = Lio – Nio = ro × Vio =
ro × Vio
Qo(θo)

Lio =
ro × s
Qo(θo)

(Rio + Nio)
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Dividing both sides by Nio yields the recruiter-producer ratio:

τio(θo) ≡
Rio
Nio

=
ro × s
Qo(θo)

(
Rio
Nio

+ 1
)

Rearranging yields:

τio =
ros

Qo(θo) – ros
,

which is the same for all sectors.
Using this expression for the recruiter producer ratio, total labor demand by sector

i for occupation o is

Ldio = (1 + τo(θo))Nio

where Nio is determined by the sectors’ profit maximization problem.
The aggregate occupation o labor demand is:

Ldo(θo) =
J∑
i=1

Ldio(θo) = (1 + τo(θo))
J∑
i=1

Nio

From this alternative definition, we have:

d log(1 + τo(θo)) =
τo(θo)

1 + τo(θo)
εQoθo

d log θo,

which is the same as the static setup.
Thus, the tightness propagation is

d logθ = Πθ,Ad logA +Πθ,Hd logH

where

Πθ,A =
[
u (I –M) – Ξθ

]–1 (LΨ –ΛA) ,

Πθ,H =
[
u (I –M) – Ξθ

]–1 (
LΨε

f
N – I –ΛH

)
,

Ξθ = LΨε
f
N [u –M (u + T)] .
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and the output propagation is:

d log y = Π y,Ad logA +Π y,Hd logH,

where

Π y,A = Ψ︸︷︷︸
frictionless

+Ψε
f
N

u –M (u + T)︸ ︷︷ ︸
search cost

Πθ,A

︸ ︷︷ ︸
tightness adjustment

,

Π y,H = Ψε
f
N︸︷︷︸

frictionless

+Ψε
f
N (u –M (u + T))Πθ,H︸ ︷︷ ︸
tightness adjustment

C.2. Dampening under tight labor market

Here, we illustrate how tight labor markets can dampen the impact of positive shocks.
When labor markets are tight, u –M (u + T) < 0 element-wise. To show that the

search channel Ψε
f
N

u –M (u + T)︸ ︷︷ ︸
search cost

Πθ,A < 0 element-wise, we only need to show

thatΠθ,A < 0 element-wise.
Note that we have

Πθ,A =
[
u (I –M) – Ξθ

]–1 (LΨ –ΛA) ,

Ξθ = LΨε
f
N [u –M (u + T)] .

For simplicity, assume wages adjust proportionally to the network-adjusted productivity
gain:

ΛA = δLΨ

for a given 0 ≤ δ < 1.
Therefore,

Πθ,A = (1 – δ)
[
u (I –M) – Ξθ

]–1 (LΨ)

Further, we assume that L = I, which means sectors only employ sector-specific

47



workers. This gives us:

Πθ,A = (1 – δ)
[
u (I –M) –Ψε

f
N [u –M (u + T)]

]–1
(Ψ)

= (1 – δ)
[
u (I –M) (I –Ω) – ε fN [u –M (u + T)]

]–1
Note that because I –M is strictly diagonally dominant and u (I –M) is a positive

diagonal matrix, u (I –M) (I –Ω). In addition, ε fN is a positive diagonal matrix and
u –M (u + T) < 0 element-wise. This implies that u (I –M) (I –Ω) –ε fN [u –M (u + T)] is
strictly diagonally dominant, andΠθ,A > 0 element-wise. Therefore, the search channel
dampens the impact of productivity shocks.

C.3. Input-output matrix

Weuse the 3-digit 2021BEAMake andUse tables accessible at https://www.bea.gov/industry/input-
output-accounts-data to calculate the relevant production elasticities11. The 3-digitMake
and Use tables record the nominal amount of each 71 commodities made by and used
by each of 71 industries. The commodities are denoted using the same codes as the
industries, but they are conceptually distinct as each industry can produce more than
one commodity.

For consistency with the industry classifications in JOLTs and the CPS unemploy-
ment by sector series, we collapse the 3-digit tables to a 13 sector table. The table
below outlines the mapping from the NAICS 2-digit classification codes to our industry
classifications. The mapping from 2-digit codes to 3-digit codes is readily available
online.

11See https://www.bea.gov/sites/default/files/methodologies/IOmanual_092906.pdf for a detailed de-
scription of how these tables are generated.
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Industry Name Short Name 2-digit codes

Leisure and Hospitality accom 71, 72
Construction const 33
Durable goods dur 33DG
Education and Health Services edhealth 61, 62
Financial Activities fin 52, 53
Government gov G
Information info 51
Mining mining 21
Nondurable good nondur 11, 31ND
Other services, except government other 81
Professional and business services profserv 54, 55, 56
Wholesale and Retail trade trade 42, 44RT
Transportation and Utilities trans 22, 48TW
TABLE A1. Mapping from NAICS classification to our industries.

With the 13-sector make and use tables in hand, we can construct production elas-
ticities in intermediate inputs and to labor, and demand elasticities. LetMij denote the
nominal value of commodity imade by industry j. Let Uij denote the nominal amount
of commodity i used by industry j. The two tables below demonstrate the elements of
the Make and Use tables.

Sector 1 Sector 2 · · · Sector J Total Industry Output

Sector 1 M11 M21 · · · MJ1
∑J

i=1Mi1

Sector 2 M12 M22 · · · MJ2
∑J

i=1Mi2

... ... ... . . . ... ...

Sector J M1J M2J · · · MJJ
∑J

i=1MiJ

Total Commodity Output
∑J

j=1M1j
∑J

j=1M2j · · · ∑J
j=1MJj —

TABLE A2. Make table
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Sector 1 Sector 2 · · · Sector J Total Intermediate Uses Total Final Uses

Sector 1 U11 U12 · · · U1J ∑J
j=1 U1j

∑J
j=1 U1j + p1c1

Sector 2 U21 U22 · · · U2J ∑J
j=1 U2j

∑J
j=1 U2j + p2c2

... ... ... . . . ... ... ...

Sector J UJ1 UJ2 · · · UJJ ∑J
j=1 UJj

∑J
j=1 UJj + pJ cJ

Total Intermediate Inputs
∑J

i=1 Ui1
∑J

i=1 Ui2 · · · ∑J
i=1 UiJ — —

Total industry output
∑J

i=1 Ui1 + w1(1 + τ1)N1
∑J

i=1 Ui2 + w2(1 + τ2)N2 · · · ∑J
i=1 UiJ + wJ (1 + τJ )NJ — —

TABLE A3. Use table

First, we calculate the fraction of commodity i produced by industry j by dividing
the entry in along each row by the corresponding "total industry output"

mij =
Mij∑J
j=1Mji

Second, we calculate the share of commodity i in industry j’s total uses as by dividing
each entry in the column corresponding to industry j by the corresponding "Total
industry output"

uij =
Uij∑J

i=1Uij + wj(1 + τj)Nj

We form the two matrices

M =


m11 m21 · · · mJ1
m12 m22 · · · mJ2
... ... . . . ...

m1J m2J · · · mJJ

 ,U =


u11 u12 · · · u1J
u21 u22 · · · u2J
... ... . . . ...
uJ1 uJ2 · · · uJJ


Then, we can calculate our input output matrix by

Ω = [MU]′

Given our assumption of constant returns to scale and zero profits, the difference
between total intermediate inputs and total industry output is the nominal income paid
to workers in each sector. We abstract from the other components of total industry
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output in the IO accounts, taxes and gross operating surplus, as they have no model
counterpart in our setup. We can therefore calculate the labor elasticities from the Use
table as "Total industry output" – "Total intermediate inputs"÷ "Total industry output."

ε
f j
Nj
=

wj(1 + τj)Nj∑J
i=1Uij + wj(1 + τj)Nj

Finally, we can back out the demand elasticities from "Total intermediate uses" and
"Total final uses" columns of the Uses table.

pici =
J∑
j=1

Uij + pici –
J∑
j=1

Uij

We can the work out the elasticities by

εDci =
pici∑J
i=1 pici

Finally, to ensure that constant returns to scale holds we rescale our elasticities pro-
portionally to ensure they sum to one. This adjustment is minor and is only needed
because we drop the small "Used" and "rest of world adjustment" categories. It does not
change any elasticity by more than 3 percent.

We report the resulting estimates of the production elasticities, labor elasticities,
and demand elasticities in the tables below. In tables A4 and A5 we assume all non-
intermediate, non-energy, and non-capital, spending goes to labor income, which
automatically imposes constant returns but leads to large labor shares.
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Sector Labor Elasticity
(
ε
f
N

)
Demand Elasticity

(
εDc

)
accom 0.510 0.051
const 0.474 0.065
dur 0.434 0.138
edhealth 0.616 0.129
fin 0.617 0.165
gov 0.626 0.132
info 0.571 0.043
mining 0.518 0.008
nondur 0.352 0.151
other 0.608 0.024
profserv 0.591 0.071
trade 0.523 0.000
trans 0.492 0.022

TABLE A4. Labor elasticities and demand elasticities according the BEA make use ta-
bles for 13-industry classification, rounded to 3 decimal places. We assume all non-
intermediate spending goes to labor income.
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accom const dur edhealth fin gov info mining nondur other profserv trade trans

accom 0.029 0.002 0.017 0.003 0.099 0.007 0.036 0.008 0.103 0.014 0.143 0.000 0.030
const 0.001 0.000 0.282 0.000 0.033 0.001 0.016 0.022 0.089 0.006 0.072 0.000 0.004
dur 0.001 0.001 0.393 0.000 0.016 0.001 0.012 0.013 0.056 0.003 0.055 0.004 0.012
edhealth 0.019 0.000 0.030 0.015 0.103 0.006 0.028 0.004 0.056 0.009 0.101 0.000 0.012
fin 0.011 0.023 0.007 0.000 0.195 0.005 0.020 0.001 0.008 0.005 0.083 0.001 0.022
gov 0.006 0.023 0.048 0.011 0.055 0.004 0.032 0.013 0.081 0.012 0.072 0.000 0.017
info 0.017 0.001 0.040 0.000 0.047 0.003 0.125 0.002 0.015 0.005 0.160 0.001 0.013
mining 0.001 0.005 0.010 0.000 0.060 0.002 0.017 0.128 0.056 0.001 0.090 0.000 0.022
nondur 0.001 0.003 0.044 0.000 0.020 0.002 0.008 0.124 0.377 0.003 0.040 0.004 0.021
other 0.013 0.005 0.066 0.010 0.113 0.005 0.033 0.003 0.032 0.013 0.086 0.000 0.012
nprofserv 0.020 0.000 0.029 0.001 0.070 0.004 0.054 0.002 0.026 0.008 0.176 0.000 0.017
trade 0.006 0.002 0.025 0.002 0.104 0.009 0.038 0.002 0.031 0.015 0.159 0.021 0.063
trans 0.014 0.007 0.022 0.000 0.080 0.015 0.025 0.030 0.080 0.011 0.093 0.001 0.129

TABLE A5. Production elasticities to intermediate inputs at 13-sector level (Ω), rounded to 3 decimal places. We assume all
non-intermediate spending goes to labor income.
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C.4. Matching Parameters

We estimate the parameters of the sector specific matching function frommonthly data
on hires and vacancies from JOLTs and unemployment from the CPS. In particular, we
estimate

logHiresi,t = αi + ηi logUi,t + (1 – ηi) logVi,t + ϵi,t

by least squares. ϕi,t = exp(αi + ϵi,t) is the time varying matching efficiency in sector i
and ηi is the matching elasticity with respect to unemployment in sector i. Effectively,
we are choosing ηi to minimize the unexplained component of matching efficiency ϵi,t.
We report the resulting estimates in the table below.

exp
(
α̂i
)

Unemployment Elasticity
(
η̂i
)

accom 1.185 0.401
const 1.106 0.507
dur 0.688 0.364
edhealth 0.703 0.336
fin 0.705 0.329
gov 0.640 0.291
info 0.703 0.275
mining 1.236 0.262
nondur 0.779 0.391
other 0.848 0.441
profserv 1.077 0.372
trade 1.009 0.430
trans 0.862 0.439

TABLE A6. Matching function parameter estimates. Based on monthly hiring, unem-
ployment, and vacancy data from Jan 2000 to Feb 2023.

Finally, we use the sector level proportion of HR workers as a proxy for the recruiter
producer ratio. The resulting recruiter producer ratios are reported below
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τi

accom 0.002
const 0.002
dur 0.007
edhealth 0.005
fin 0.008
gov 0.011
info 0.013
mining 0.005
nondur 0.007
other 0.018
profserv 0.020
trade 0.003
trans 0.001

TABLE A7. Estimated recruiter producer ratios based on the number of HR workers in
industry i over total employment in industry i.

C.5. Computing Occupational Worker Share

For our occupational labor market calibration, we need to compute ε fN , which is the
occupational worker elasticity of production. To do this, we obtain wage and employ-
ment data for ONET major occupations at 3-digit sector level from the Occupational
Employment and Wage Statistics (OES). For each sector i, we compute ε fNio as:

ε
f
Nio

= ε
f
Ni

wioLio∑
owioLio

,

where ε fN is the labor share we obtained earlier from the input-output table.
Table A8 contains our calibration estimates.
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Admin Agg Arts Bus Ops Care Clean Cons Educ Eng Food S Health P Health S Legal Manag Math Prod Prot S Repair Sales Science Soc S Trans

accom 1.7 0.0 0.9 0.8 1.9 1.6 0.0 0.2 0.0 23.9 0.1 0.0 0.0 3.5 0.1 0.3 0.4 0.7 1.4 0.0 0.0 0.8
const 2.8 0.0 0.1 3.0 0.0 0.1 22.9 0.0 0.7 0.0 0.0 0.0 0.0 5.6 0.1 0.6 0.0 3.4 1.0 0.1 0.0 1.1
dur 1.9 0.0 0.2 2.3 0.0 0.1 0.6 0.0 4.0 0.0 0.0 0.0 0.1 4.6 1.9 11.5 0.0 1.3 1.2 0.2 0.0 1.4
edhealth 4.1 0.0 0.4 1.4 0.6 0.8 0.1 12.9 0.0 0.7 17.8 5.3 0.0 4.3 0.7 0.1 0.3 0.4 0.1 0.6 2.1 0.4
fin 7.2 0.0 0.2 10.6 0.1 0.3 0.1 0.0 0.1 0.0 0.3 0.0 0.6 8.4 3.2 0.0 0.1 1.3 6.3 0.0 0.1 0.3
gov 6.8 0.1 0.5 8.6 0.6 0.8 2.3 1.0 2.6 0.2 4.0 0.5 2.7 6.6 2.4 0.9 12.0 2.3 0.2 2.5 2.9 2.1
info 2.4 0.0 4.4 4.0 0.2 0.0 0.1 0.1 0.6 0.1 0.0 0.0 0.3 7.2 10.3 0.1 0.0 2.0 3.2 0.0 0.0 0.2
mining 1.3 0.0 0.0 1.4 0.0 0.0 7.3 0.0 1.8 0.0 0.0 0.0 0.1 3.7 0.4 1.4 0.0 1.9 0.6 0.7 0.0 2.4
nondur 1.8 0.1 0.2 1.2 0.0 0.2 0.1 0.0 1.0 0.3 0.0 0.0 0.0 3.3 0.3 9.8 0.0 1.7 1.2 0.8 0.0 2.3
other 6.4 0.0 1.7 6.1 8.0 0.8 0.2 0.8 0.3 0.5 0.3 0.7 0.3 9.4 1.0 2.4 0.3 9.5 1.9 0.3 1.6 3.4
profserv 5.4 0.0 1.1 8.6 0.1 2.3 0.7 0.1 3.4 0.1 1.2 0.3 3.1 10.5 7.9 1.0 1.1 0.7 2.2 1.2 0.1 1.7
trade 3.9 0.1 0.5 1.7 0.1 0.2 0.1 0.0 0.2 0.7 1.6 0.1 0.0 5.0 0.8 1.1 0.1 2.3 15.2 0.1 0.0 6.0
trans 6.2 0.0 0.0 0.4 0.0 0.2 0.4 0.0 0.4 0.0 0.0 0.0 0.0 0.5 0.2 0.9 0.0 2.9 0.5 0.1 0.0 18.2

TABLE A8. Occupational worker elasticity of output, in percentage terms, rounded to 1 decimal place.
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C.6. Imputing Occupation Labor Market Parameters

For the occupational labormarket specification, we need to calibrate unemployment, va-
cancy, and tightness of each occupation. We currently don’t have access to occupational
labor market characteristics, so we instead impute these parameters. For simplicity, we
assume the total number of unemployment and vacancy for an occupation is the sum
of unemployment and vacancy across sectors, weighted by the sectors’ wage shares of
that particular occupation:

Vo =
∑
i

ε
f
Nio

ε
f
Ni

Vi,

Uo =
∑
i

ε
f
Nio

ε
f
Ni

Ui,

where V denotes vacancy and U denotes unemployment. The intuition behind this is
that each sector’s contribution to vacancy postings and the number of people looking
for jobs in that sector for an occupation is proportional to how much the sector relies
on that occupation.

Note that, with this imperfect simplifying assumption, we can back out changes in
sectoral tightness. For sector j, the first-order response in tightness is: Tightness for
sector j is:

θj =
Vj
Uj

=
∑
o
Vjo
Vo Vo∑

o
Ujo
Uo Uo

⇒ d log θj = d logVj – d logUj

=
∑
o

Vo
Vj

Vjo
Vo
d logVo –

Uo
Uj

Ujo
Uo

d logUo

=
∑
o

Vjo
Vj
d logVo –

Ujo
Uj

d logUo

=
∑
o

ε
f
Njo

ε
f
Nj

d log θo.

We estimate the matching elasticities using the same methodology from appendix
section C.4. Table A9 reports the estimated coefficients.
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Occupation α̂i Unemployment Elasticity (η̂o)

Admin 0.883 0.368
Agg 0.907 0.390
Arts 0.939 0.352
Bus Ops 0.879 0.356
Care 0.978 0.378
Clean 1.009 0.372
Cons 1.054 0.461
Educ 0.713 0.338
Eng 0.871 0.357
Food S 1.163 0.398
Health P 0.749 0.346
Health S 0.731 0.343
Legal 0.923 0.354
Manag 0.915 0.368
Math 0.905 0.342
Prod 0.797 0.374
Prot S 0.744 0.319
Repair 0.909 0.390
Sales 0.975 0.398
Science 0.829 0.355
Soc S 0.701 0.334
Trans 0.924 0.406

TABLE A9. Matching parameters for major occupations

Additionally, following our vacancy assumption,we assume the number of recruiters
each sector dedicates to recruiting a particular occupation is proportional to the occu-
pation elasticity of production. In other words:

Ro =
∑
i

ε
f
Nio

ε
f
Ni

Ri,
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Occupation τo

Admin 0.006
Agg 0.002
Arts 0.011
Bus Ops 0.014
Care 0.006
Clean 0.006
Cons 0.004
Educ 0.005
Eng 0.017
Food S 0.002
Health P 0.009
Health S 0.003
Legal 0.027
Manag 0.019
Math 0.020
Prod 0.006
Prot S 0.009
Repair 0.007
Sales 0.005
Science 0.014
Soc S 0.006
Trans 0.003

TABLE A10. Recruiter producer ratios based on the number of estimated recruiters in
occupation o.

where Ri is the number of recruiters in sector i. This is also implicitly assuming that
the recruiting cost for the occupations are the same.

Since we have the total employment for each occupation from the OES, we can there-
fore compute the recruiter-producer ratios. Table A10 reports the estimated recruiter-
producer ratio for different occupations.
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Appendix D. Robustness of calibration results to alternative wage
assumptions

D.1. Robustness to AlternativeWage Assumptions

Because wages play an important role in how shocks propagate in our model econ-
omy, in this section we check the robustness of our quantitative results to alternative
assumptions about wages. Figures A1A and A1B plot the response of output and the
unemployment rate to a 1% positive shock to durable manufacturing productivity under
the following wage assumptions:

(i) The blue bars labeled "Rigid Real" assume that network-price-adjusted wages do
not change in response to the shock.

d logw –Ld log p = 0.(Rigid Real)

(ii) The greenbars labeled "0.9MP" assume that network-price-adjustedwages change
by 0.9 of the change in the marginal product of productive labor.

d logw –Ld log p = 0.9d logMP.(0.9MP)

(iii) The red bars labeled "Rigid in Production Only" assume that wages change by
exactly as much as the marginal product of labor in all occupations except for
production workers. We assume that network-price-adjusted wage changes are
zero for production workers. Therefore, this specification imposes rigid wages
in the production occupation but flexible wages in every other occupation.

(iv) The purple bars labeled "Rigid Nominal" assume that the nominal wage does not
change.

d logw = 0 or d logw –Ld log p = –Ld log p.(Rigid Nominal)

As Corollary 2 shows, Hulten’s theorem holds under the MP wage assumption, making
the purple bars in Figures A1A and A1B identical to the orange bars that represent
production linkages only. Additionally, there are no changes in the unemployment
rate when wage changes are proportional to changes in the marginal product of labor.
However, the results in Section 4.4 are quantitatively robust to the other three wage

60



assumptions we test. Combining production linkages with labor market frictions leads
to non-trivial amplification of output response and widespread effects on unemploy-
ment, even when wages move by nearly as much as the marginal product of labor, as
demonstrated by the orange bars. In fact, the green bars show that wage rigidity in just
a single occupation is enough to generate amplification of the response of output and
large localized changes in unemployment.

The amplification effect diminishes with rigid nominal wages since relative price
changes across sectors lead to corresponding wage changes, partially mitigating labor
market frictions. Under this wage specification, changes in unemployment are also
smaller but remain non-trivial and are widespread across all occupations.
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A. Sectoral and aggregate output response

B. Unemployment rate response

FIGURE A1. Robustness to alternative wage assumptions: Response of output and the
unemployment rate to a 1% shock to technology in the durable manufacturing sector.
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